Η άσκηση Μια σφαίρα σε σωλήνα είχε ένα ακόμη ερώτημα. Προβληματίστηκα αν θα πρέπει να το δώσω, θεωρώντας το δύσκολο. Έτσι δεν υπήρχε στην αρχική ανάρτηση. Αυτές τις μέρες σκεφτόμουν, ότι πολλές φορές όταν εφαρμόζουμε την αρχή διατήρηση της στροφορμής, οι μαθητές μας συναντούν ιδιαίτερη δυσκολία να κατανοήσουν τι συμβαίνει με τις ενέργειες ή τους φαίνεται περίεργη η κατάσταση. Δίνω λοιπόν το ερώτημα αυτό, απευθύνοντάς το όμως, μόνο στους συναδέλφους και όχι σε μαθητές.
……………………………..
Ένας σωλήνας μήκους ℓ1=6m, μπορεί να περιστρέφεται οριζόντια, γύρω από κατακόρυφο άξονα που διέρχεται από το ένα άκρο του Ο και είναι ακίνητος. Τοποθετούμε στο εσωτερικό του μια σφαίρα μάζας 4kg την οποία δένουμε με ελατήριο σταθεράς k=50Ν/m με μήκος 2m, το άλλο άκρο του οποίου δένεται στη βάση του σωλήνα. Κάποια στιγμή ασκούμε στο άλλο άκρο του σωλήνα Α οριζόντια δύναμη σταθερού μέτρου F=10Ν, η οποία παραμένει συνεχώς κάθετη στον άξονα του σωλήνα.
Έτσι το σύστημα αρχίζει να περιστρέφεται. Μετά από λίγο καταργούμε τη δύναμη και παρατηρούμε ότι τελικά* η σφαίρα εκτελεί κυκλική κίνηση και το μήκος του ελατηρίου είναι πλέον 4m. Αν δεν υπάρχουν τριβές και η ροπή αδράνεια του σωλήνα ως προς τον άξονα περιστροφής είναι Ι=120kg∙m2, ζητούνται:
i) Η τελική γωνιακή ταχύτητα του σωλήνα.
ii) Ο αριθμός των περιστροφών του σωλήνα για όσο χρόνο ασκείται η δύναμη F.
iii) Σε μια στιγμή ενώ έχει αποκατασταθεί μόνιμη κατάσταση, η σφαίρα λύνεται από το ελατήριο. Ποια θα είναι τελικά η γωνιακή ταχύτητα περιστροφής του σωλήνα;
iv) Τη στιγμή που η σφαίρα εγκαταλείπει το σωλήνα, ποια γωνία θα σχηματίζει η ταχύτητά της με τον άξονα του σωλήνα;
*Τελικά: Η σφαίρα θα εκτελεί για αρκετό διάστημα μια ιδιόμορφη ταλάντωση μέχρι που να αποκατασταθεί μόνιμη κατάσταση.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου